31 research outputs found

    Wajah moral masyarakat Melayu pasca moden: Antara realiti, harapan dan gagasan pendidikan moral tinggi

    Get PDF
    Dewasa ini dunia telah dilakari oleh pelbagai trend dan paradigma kehidupan bentuk baru. Pascamodenisme yang ditandai arus gelombang peringkat ketiga telah memberi impak yang bukan sedikit dalam kehidupan moral masyarakat khususnya masyarakat Melayu. Nilai-nilai yang dibawah oleh ideologi pascamodenisme menerusi pelbagai medium telah memberi dampak moral-sosial yang amat menakutkan. Hal ini tidak terkecuali meresapi ke dalam jiwa dan jatidiri masyarakat Melayu samada di Bandar mahu pun di luar Bandar. Statistik kebejatan sosial membuktikan hal ini. Sebut apa jua bentuk perlakuan tidak bermoral – pembunuhan, sumbang muhrim, pelacuran, gangsterisme, alkoholisme, perjudian, vandalisme dan sebagainya – setiap satu daripada amat ramai melibatkan masyarakat Melayu. Justeru itu, generalisasi dapat dibuat bahawa wajah moral masyarakat Melayu berada pada tahap yang amat kronik dan kritikal. Justeru itu, kertas kerja konseptual ini akan dibahagikan kepada tiga bahagian. Pada bahagian pertama kami akan menghuraikan secara konsep-konsep asas kertas kerja ini selain memaparkan hujah ‘rupa bentuk wajah’ moral masyarakat Melayu dulu dan kini. Kami juga akan memberikan justifikasi sebab-sebab munculnya wajah moral masyarakat Melayu masa kini Pada bahagian kedua kertas kerja ini, kami akan mengagaskan usaha-usaha yang telah dan sedang dibuat bagi ‘mencantikkan’ wajah moral masyarakat Melayu. Dalam hal ini, kami turut melontarkan idea dan kritikan pendekatan-pendekatan yang dibuat selain mengagaskan suatu pendekatan yang lebih bersepadu. Pada bahagian akhir kertas kerja ini, kami menampilkan suatu pendekatan pendidikan moral tinggi yang mampu mengembalikan semula wajah moral yang indah dan bersih itu

    Fabrication of flexible Au/ZnO/ITO/PET memristor using dilute electrodeposition method

    Get PDF
    DRAM has been approaching its maximum physical limit due to the demand of smaller size and higher capacity memory resistor. The researchers have discovered the abilities of a memristor, a Non Volatile Memory (NVM) that could overcome the size and capacity obstacles. This paper discussed about the deposition of zinc oxide (ZnO) on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrate by electrodeposition. Metallic Zn film was deposited on substrates with varying deposition time from 15 to 120 seconds in very dilute zinc chloride (ZnCl2) aqueous and subsequently oxidized at 150C to form ZnO/ITO coated PET junction. The deposited thin film was characterized via x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The results from I-V measurement show the deposited ZnO exhibits pinched hysteresis loop. The hysteresis loop becomes smaller with increasing deposition time. The 15 seconds electrodeposition gave the largest hysteresis loop and largest value of resistive switching ratio of 1.067. The result of the synthesized ZnO on the flexible substrate can be one of the alternatives to replace the current memory system as the flexible memory system

    Effects of gamma irradiation on tropomyosin allergen, proximate composition and mineral elements in giant freshwater prawn (Macrobrachium rosenbergii)

    Get PDF
    Effects of food irradiation on allergen and nutritional composition of giant freshwater prawn are not well documented. Thus, this study aimed to investigate the effects of gamma irradiation on tropomyosin allergen, proximate composition, and mineral elements in Macrobrachium rosenbergii. In this study, prawn was peeled, cut into small pieces, vacuum packaged and gamma irradiated at 0, 5, 7, 10 and 15 kGy with a dose rate of 0.5 kGy/h using cobalt-60 as the source, subsequently determined the level of tropomyosin, proximate composition and mineral elements respectively. The results showed that band density of tropomyosin irradiated at 10 and 15 kGy is markedly decreased. Proximate analysis revealed that moisture, protein, and carbohydrate content were significantly different as compared with non-irradiated prawn. Meanwhile, gamma irradiated M. rosenbergii at 15 kGy was observed to be significantly higher in nickel and zinc than the non-irradiated prawn. The findings provide a new information that food irradiation may affect the tropomyosin allergen, proximate composition and mineral elements of the prawn

    Hydrophobic mullite ceramic hollow fibre membrane (Hy-MHFM) for seawater desalination via direct contact membrane distillation (DCMD)

    Get PDF
    A low-cost hydrophobic mullite hollow fibre membrane (Hy-MHFM) fabricated via phase inversion/sintering technique followed by fluoroalkyl silane (FAS) grafting is presented in this study. The prepared CHFMs were characterized before and after the grafting step using different characterization techniques. The pore size of the CHFM surface was also determined using ImageJ software. The desalination performance of the grafted membrane was evaluated in direct contact membrane distillation (DCMD) using synthetic seawater of varying salt concentrations for 2 h at various feedwater temperatures. The outcome of the evaluations showed declines in the permeate flux of the membrane at increasing feed concentration, as well as increased flux with increased feed temperature. The long-term stability of the membrane was achieved at time 20 h, feed temperature 60 °C, and permeate temperature 10 °C, the membrane achieved a salt rejection performance of about 99.99 % and a water flux value of 22.51 kg/ m2 h

    ISSUES IN BIOTECHNOLOGY TEACHING - A nationwide biotechnology outreach and awareness program for Malaysian high schools

    Get PDF
    Biotechnology education in developing nations remains one of the rate limiting factors in achieving optimal human resource capacity to drive and tap the bio-resources of these nations. Many developing countries are situated within rich bio-diversity enclaves. Biotechnology offers the promise of tapping these bio resources towards due process of developing these nations. While there may be a steady stream of biology and biotechnology based graduates, from Malaysian as well as foreign universities contributing to the human resource base for these countries, the numbers and knowledge diversity produced, still lack the capacity to optimally power research and development as well as supply the industrial biotechnology sectors of these countries. Realizing the need to address these issues at the grassroots level of higher education, Malaysia has taken an active step of bringing biotechnology into the classrooms of high schools throughout the country. These future generations of Malaysians, are hoped to progress towards manning and driving Malaysia's BioValley initiatives (a biotech based R&D and industry cluster), towards the national dream of developed nation status by the year 2020, using biotechnology as an economic growth vehicle. Here, we share our experiences in developing and proliferating a biotechnology awareness program for Malaysian high schools. It is hoped that similar programs will strive towards similar objectives in other developing countries

    Role of lithium oxide as a sintering aid for a CGO electrolyte fabricated via a phase inversion technique

    No full text
    The incorporation of lithium oxide (Li2O) as a sintering additive has specific advantages for electrolyte membrane fabrication. However, the viability of the sintering additive to be implemented in a phase inversion technique is still ambiguous. In this first attempt, lithium was doped into a gadolinium-doped ceria (CGO) crystal structure using the metal nitrate doping method and calcined at four different temperatures, i.e. 140, 300, 500 and 700 degrees C. The prepared Li-doped CGO (Li-CGO) powders were analyzed by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), N-2 adsorption/desorption, and Fourier-transform infrared (FTIR). Primary results demonstrate that the calcination temperature of the Li-CGO influences the condition of the electrolyte suspension. Li-CGO calcined at 700 degrees C (D-700), as compared with other Li-CGO, possessed a strong interaction between the Li and CGO. The D-700 was then incorporated into the electrolyte flat sheet membrane which was prepared by a phase inversion technique. The membrane was then sintered at different sintering temperatures from 1350 degrees C to 1450 degrees C. In comparison with the unmodified CGO, the morphological results suggest that the Li2O can remarkably promote the densification of CGO at a lower sintering temperature (1400 degrees C). These findings help to promote the use of sintering additives in a ceria-based electrolyte suspension specifically for the phase inversion technique

    Transition metal oxide (TMO) thin film memristor on cu substrate using dilute electrodeposition method

    No full text
    Instead of titanium dioxide (TiO2), many researches have been done to explore the compatibility of zinc oxide (ZnO) to be used as the active layer of memristor. In this study, an Au/ZnO-Cu2O-CuO/Cu memristor was fabricated using dilute electrodeposition and subsequently thermal oxidation. The XRD result indicates that Zn was oxidized to ZnO and has a wurzite structure while copper (Cu) substrate was also oxidized to copper (I) oxide (Cu2O) and copper (II) oxide (CuO). The surface morphology of ZnO shows the formation of needle-like structure on the surface after the thermal oxidation process. 15 s deposited ZnO-Cu2O-CuO gave the thinnest film of 81 nm with largest value of resistance difference of 14.11 k3 and resistive switching ratio of 3.76. Empirical study on thermodynamics of metal oxides and diffusivity of Zn2+ and O21 in ZnO shows that the structure is formed due to the difference of diffusivity of each species during the thermal oxidation process. The synthesized Au/ZnO-Cu2O-CuO/Cu memristor shows a potential application in production of a non-complex and low cost memristor

    Comparative study on the performance of co-extruded hollow fiber solid oxide fuel cell fuelled with hydrogen and methane

    No full text
    In this study, the effects of two fuel types, i.e., hydrogen and methane on the electrochemical performance of the co-extruded triple layer hollow fiber, were systemically studied. The triple layer hollow fiber consisted of electrolyte/active functional layer (AFL)/anode was fabricated by single-step phase-inversion-based co-extrusion technique prior to the sintering process at temperature range of 1400 to 1500 °C. The hollow fibers were characterized by three-point bending test, gas tightness test, and scanning electron microscope (SEM). The electrochemical performance test was carried out at temperatures of 700–800 °C by flowing fuel at 20 ml/min. Based on the results attained, the gas tightness and bending test are improved by the increase of sintering temperature. SEM results show that the finger-like morphology length around 100 μm is obtained. In addition, the AFL layer located in the middle layer of the hollow fiber has its own finger like which forms sandwich-like structure with the anode layer. The open circuit voltage is recorded at 1.05 V with the highest power density obtained at 0.6 W cm−2 by using hydrogen. By changing the fuel into methane gas, the highest power density is achieved at 0.8 W cm−2. This is due to the methane that carries more hydrogen molecule. This indicates that the methane fuel can be utilized in hollow fiber SOFC systems

    A novel single-step fabrication anode/electrolyte/cathode triple-layer hollow fiber micro-tubular SOFC

    No full text
    Micro-tubular solid oxide fuel cells (MT-SOFCs) have attracted much attention due to; higher volumetric output density, greater tolerance to cycling, quicker start-up capability and better mobility. Fabrication process of MT-SOFCs is one of the critical factor that ensures the success of a cell. There are three main components (i.e. anode, electrolyte and cathode) in the development of MT-SOFCs which are generally fabricated through separated and multiple laborious steps. This study aims to produce a novel anode/electrolyte/cathode (NiO-CGO/CGO/LSCF-CGO) triple-layer hollow fiber (TLHF) in a single-step using phase inversion based co-extrusion combined with co-sintering technique. The challenge lies within the diverse sintering behaviors among the anode, electrolyte and cathode layers at some point of the cell fabrication. In this study, the TLHF was found being able to survive the co-sintering at 1450 °C resulting a defect free precursor producing 0.48 Wcm−2 maximum power densities at 525 °C, which is comparable with the cell fabricated using conventional multiple-step process
    corecore